Questions

- 1. What is the flow of current when a lamp containing a 60-watt bulb is plugged into a standard U.S. outlet?
 - a. 6600 volts
 - b. 5.5 volts
 - c. 0.66 amps
 - d. 0.55 amps
 - e. 6600 amps

Solution: Use the equation P = IV where P is given as 60 watts, V is given as 110 volts. Solving for I, which will be in amps:

$$P = IV$$

 $60 \text{ W} = I (110 \text{ V})$
 $\frac{60}{110} = 0.54545454... \approx 0.55 \text{ A}$

- 2. Theoretically, how many lamps like that in question 1 could be on the same circuit before tripping the 15-amp circuit breaker?
 - a. 5 lamps
 - b. 15 lamps
 - c. 20 lamps
 - d. 27 lamps
 - e. 55 lamps

Solution: The 60 W bulb uses 0.55 A. The total number of lamps must use under 15 A.

$$\frac{15 \text{ A}}{0.55 \text{ A}} \approx 27$$
; Check: $27 \times 0.55 = 14.85$

Using 28 lamps on the circuit will trip the breaker.

- 3. How much power is generated by the number of lamps calculated in question 2?
 - a. 0.165 watts or less
 - b. 1400 watts or more
 - c. 1650 watts or less
 - d. 0.14 watts or less
 - e. 1650 watts or more

Solution: Use the equation P = IV where I is given as the total current from question 2 in amperes, the potential difference is given as 110 volts. Solving for P, in watts gives:

$$P = IV$$

 $P = (14.85 \text{ A})(110 \text{ V})$
 $P = 1633.5 \text{ W}$

- 4. A hair dryer draws a current of 10 A on its "Hot" setting and a current of 4 A on its "Cool" setting. What percent decrease in power occurs when you switch the hair dryer from the "Hot" setting to the "Cool" setting?
 - a. 60% *
 - b. 150%
 - c. 0.6%
 - d. 15%
 - e. -150%

Solution: Use the equation P = IV to find the power drawn by the hair dryer on "Hot."

$$P = IV$$

$$P = (10 \text{ A})(110 \text{ V}) = 1100 \text{ W}$$

Next, use the equation again to find the power drawn by the hair dryer on "Cool."

$$P = IV$$

$$P = (4 \text{ A})(110 \text{ V}) = 440 \text{ W}$$

Finally, compute the percent decrease in power using the formula provided:

Percent decrease =
$$\frac{\text{original value } - \text{ new value}}{\text{original value}} \times 100$$
$$= \frac{1100 - 440}{1100} \times 100$$
$$= 60\%$$

Therefore, there is a 60% decrease in power.

- 5. Referring to the graph of a transient fault, about how much power was the electrical line carrying before the fault occurred?
 - a. 200 V
 - b. 228 V
 - c. 0 V
 - d. 50 V
 - e. 250 V

Solution: Looking at the graph line, it starts above the halfway point between 200 volts and 250 volts. The closest answer choice is 228 volts for *time* = 0 until the transient fault occurred.

6. Which of the following piecewise functions best describes the graph of the blackout event shown below?

a.
$$f(t) = \begin{cases} 170 & \text{if } 0 \le t < 4 \\ -85t + 510 & \text{if } 4 \le t < 6 \\ 0 & \text{if } t \ge 6 \end{cases}$$

b.
$$f(t) = \begin{cases} 170 \text{ if } t < 4 \\ 85t - 510 \text{ if } 4 \le t < 6 \\ 0 \text{ if } t \ge 6 \end{cases}$$

c.
$$f(t) = \begin{cases} 170 \text{ if } 0 \le t \le 4 \\ -85t + 510 \text{ if } 4 \le t \le 6 \end{cases}$$

d.
$$f(t) = \begin{cases} 170 \text{ if } t \le 4 \\ 85t - 510 \text{ if } 4 < t \le 6 \\ 0 \text{ if } t > 6 \end{cases}$$

Solution: The leftmost piece of the graph is the horizontal line at V = 170, the middle segment of the graph is the line V = -85t + 510, which is found by using endpoints (4, 170) and (6, 0) and the rightmost segment of the graph is the horizontal line at V = 0.

7. Which of the following graphs shows what a typical brownout would look like in terms of power supply over time?

a.

b.

c.

d. Correct answer:

- 8. Based on the information provided, why would a silver ground wire be chosen over a copper one?
 - a. Silver conducts an electric charge better than copper.
 - b. Silver has a higher density than copper.
 - c. Silver has a higher Resistivity-density product than copper.
 - d. Silver is more resistive than copper.

$$\rho_{COPPER} = \frac{\text{resistivity-density product}}{\text{density}} = \frac{150}{8.96} = 16.74 \text{ n}\Omega \text{ im}$$

$$\sigma_{COPPER} = \frac{1}{\rho} = \frac{1}{16.74} = 0.0597 \text{ S/m}$$

$$\rho_{SILVER} = \frac{166}{10.49} = 15.82 \text{ n}\Omega \text{ im}$$

$$\sigma_{SILVER} = \frac{1}{15.82} = 0.0632 \text{ S/m}$$

$$\sigma_{\it SILVER} > \sigma_{\it COPPER}$$

- 9. What resistance would be required in the circuit, or network, shown?
 - a. 960 ohms
 - b. 12 ohms
 - c. 15 ohms
 - d. 0.07 ohms
 - e. 8 ohms

Solution: To find resistance, first solve the Ohm's Law equation, $I = \frac{V}{R}$, for resistance (R).

$$I = \frac{V}{P}$$

$$I = \frac{V}{R}$$
$$I \times R = \frac{V}{R} \times R$$

$$\frac{I \times R}{I} = \frac{V}{I}$$

$$R = \frac{V}{I}$$

Next, substitute the known values for voltage and current into the new rearranged equation.

$$R = \frac{120 \text{ V}}{8 \text{ A}}$$

$$R = 15$$
 ohms, or 15Ω

Therefore, the resistance in the circuit is 15 ohms.

- 10. Using the information in the Table, which logic gate should be used when designing a properly functioning relay circuit?
 - a. AND
 - b. NAND
 - c. OR
 - d. NOR
 - e. EX-NOR