BACKGROUND

Construction cranes, cell phone towers, water towers, fire lookouts, and power line towers are all examples of structures called truss towers. A truss tower is a freestanding framework tower. A truss is an assembly of beams that creates a rigid structure so that the assemblage as a whole behaves as a single object.

The tallest wooden truss tower ever constructed was built in Mühlacker, Germany, and topped out at a height of 190 meters. Currently, the tallest truss tower in the world is the Tokyo Skytree, with a height of 634 meters.

CHALLENGE

Truss towers are often designed to hold a very heavy weight using only minimal materials. Construction cranes are examples of modular truss towers, constructed from multiple, repeating truss sections. The challenge this year is to research, design, and build a segmented truss tower that is composed of TWO SEPARATE truss sections that will be stacked one on top of the other. The two stacked truss sections measured together will form the total 12 inch height of your tower.

The goal of this challenge is efficiency: holding the maximum weight using a minimum amount of material.

As an architect, designer, and engineer, be sure to consider the following when developing your design:

1. Aesthetics
2. Types of trusses (function)
3. Size constraints
   a. Height
   b. Maximum diameter
   c. Minimum interior diameter
4. Dead load of the structure
5. Live load of the structure
6. Materials durability and availability
7. Maintenance
DIMENSIONS, MATERIALS, SPECIFICATIONS

Dimensions of INDIVIDUAL tower sections
- Maximum height of each truss tower section: 6 ¼ “
- Maximum exterior diameter of structure: 3”
- Minimum interior void diameter of structure: 1.66”

Dimensions of the COMBINED tower
- Height of the completed FULL 2-segment tower: 12”
- Maximum exterior diameter of structure: 3”
- Minimum interior void diameter of structure: 1.66”

Building Materials
- Basswood strips, 1/8” x 1/8” only. A MAXIMUM of 16 linear feet of Basswood stick is allowed.

No other construction materials are allowed to be used in the construction of your truss tower.

Keep in mind that the weight of the structure affects its efficiency (weight is a factor in the efficiency formula). Unnecessary materials increase the structure weight without adding strength, and thus have a negative impact on the efficiency rating of the structure.

Measuring Materials
- 12 inch long piece of **3 inch inside diameter schedule 40 PVC pipe** for measuring maximum diameter
  - Your structure must fit inside of this pipe.
- 12 inch long piece of **1.25 inch inside diameter schedule 40 PVC pipe** for measuring minimum interior diameter.
  - This pipe must fit inside of your structure from top to bottom, inclusive.

See attached images of the PVC pipe that is to be used for testing

Specifications

1. The truss tower needs to be constructed using only 1/8” by 1/8” Basswood sticks.
2. A maximum of 20 linear feet of Basswood stick can be used in the construction of your tower.
3. The structure needs to fit inside of a piece of 3 inch inside diameter schedule 40-PVC pipe.
4. A piece of 1.25 inch inside diameter schedule-40 PVC pipe needs to fit through the vertical center of your tower.
5. The test rod will run up through the center of your structure.
6. The test block will be a 3 ½” by 3 ½” square block that is ¾" thick.
7. The test block will be placed on the top of your structure, at the 12” height
8. The height of the structure is 12 inches, maintained at multiple points to support the test block.
9. The two truss sections are to be submitted as separate pieces that will be stacked when tested.
10. A tolerance of +/- 1/8” will be applied for the measurement of individual truss sections and the final truss tower.
11. Gussets are not allowed to be used in the construction of your tower
12. Lamination refers to the combining of two or more pieces of material with the grain running in the same direction. **Laminations of any kind are NOT allowed in the construction of the INDIVIDUAL truss sections.** Use of laminations in a truss section will result in an automatic disqualification. Unglued laminations are allowed ONLY at the points where the two truss tower sections come in contact with each other when stacked.
13. Lap joints are allowed and involve the gluing of two pieces of Basswood material with the grain pattern normally at right angles; however, lap joints less than 15° or greater than 165° would circumvent the lamination guidelines and would result in a disqualification.
14. Hot-melt glue is not allowed, all other types of glue may be used for construction.
15. The use of glue for coating structural components is not allowed. Excess glue on joints is considered a gusset and would result is a disqualification.

**AUTOMATIC DISQUALIFICATIONS**

1. Use of any material that is not 1/8” by 1/8” Basswood stick
2. Use of any laminations in individual truss sections
3. Use of gussets or over-gluing that emulates a gusset.
4. The structure or structure pieces do not meet the inside, outside, and height requirements

**REQUIREMENTS FOR CHECK-IN**

1. Completed structure segments need to be separated and submitted together in a single appropriately-sized box labeled with the team ID only.

2. The structure segments needs to have “up,” “down,” “top,” and “bottom” clearly labeled so that the structure will be tested in the correct orientation. Color coded marking on structure segments may be used to indicate how the truss segments are to be aligned for testing.

3. Your portfolio, which is placed inside of the box, is to include all of the following complete materials:
   - Verification form
   - Analysis and assessment form
   - Full size single-side view of one submitted structure segment section on paper no larger than 11”x17” (folded as needed to fit into submission box)
   - A parts list of all of the structure beam cut pieces used in construction (see below)

**DRAWING AND PARTS LIST**

In construction, a builder uses a set of drawings along with a list of the actual cut parts needed for construction.

For this project, your drawing only needs to be a view of your structure from a single side of ONE of your truss sections. You do not need multiple side views or a top view for your drawing.
In addition, a parts list for this project is required. The parts list needs to be a list of the actual cut pieces used for the final construction. The list needs to include the length and quantity needed for construction.

### Example Parts List: Cut from 1/8” Basswood Sticks

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Length</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Support</td>
<td>6”</td>
<td>16</td>
</tr>
<tr>
<td>Horizontal Connectors</td>
<td>2.75”</td>
<td>24</td>
</tr>
<tr>
<td>Diagonal Connectors</td>
<td>3.5”</td>
<td>16</td>
</tr>
</tbody>
</table>

Your completed structure MUST fit into the space between the PVC pipe sections.

The completed structure length must be 12” tall, with a tolerance of 1/8”.